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2. PHYSICAL BACKGROUND AND MOTIVATION
An alternating direction implicit (ADI) scheme is introduced which

2.1. Problem Formulationis capable of solving a general parabolic equation in two space
dimensions with mixed derivative and convective terms. In the case

A dye laser cell is a device which amplifies a highlyof constant coefficients the scheme is shown to be unconditionally
tuned laser beam via an energy transfer from a second,stable. The study was motivated by the investigation of flow in a

dye laser cell (a device used for the amplification of a laser beam), a untuned, but more powerful laser beam. Fluorescent dye
simple model for which involves laminar flow in a two-dimensional is passed at high speed through a narrow convergent/diver-
symmetric channel subject to impulsive heating. Numerical results gent channel and impulsively heated at the neck. For fur-
are presented for this problem, and the qualitative behaviour of

ther details see Duarte and Hillman [6] or Schäfer [13].the temperature distribution within the channel for different Peclet
A first step in modelling the heat and mass transfer ofnumbers is discussed. Q 1996 Academic Press, Inc.

the fluid in the dye laser cell may be achieved by consider-
ing the convection/diffusion equation together with a lubri-

1. INTRODUCTION cation approximation for the fluid flow. (For such an ap-
proximation to be valid we require the flow in the channel

The purpose of this paper is to introduce an uncondition- to remain laminar; experimental results suggest that this
ally stable ADI scheme capable of solving the general is the case, but the onset of turbulence is an important and
parabolic partial differential equation difficult question and is the subject of ongoing research.)

This model requires the solution of the non-dimensional-
ised two dimensional heat-transport equation
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where the functions a, c, u, v . 0, and b2 , 4ac. The
development of such a scheme was motivated by the physi- in the converging/diverging channel 21 # x # 1,
cal problem of heated fluid flow through a dye laser cell 2g(x) # y # g(x), subject to the boundary conditions
outlined in Section 2, which requires the solution of the
two-dimensional heat-transport equation on a non-rectilin- T 5 0 x 5 21, (2.2)
ear domain. The use of boundary fitted coordinates allows

T 5 0 y 5 6g(x), (2.3)the problem to be solved on a rectilinear domain but trans-
forms the governing partial differential equation to the T

x
5 0 x 5 1, (2.4)more general form given by Eq. (1.1); accordingly an ADI

method appropriate for the solution of Eq. (1.1) is intro-
duced in Section 3 and the scheme’s unconditional stability and the initial conditions
is shown. The extension of the scheme to N dimensions is
also discussed. In Section 4 the scheme is applied to the dye T(0, y, 0) 5 1, (2.5)
laser cell problem and results are presented for a variety of

T(x, y, 0) 5 0, x ? 0. (2.6)different values of the Peclet number which represents the
balance between convection and diffusion terms. Some
concluding remarks are offered in Section 5. Here T denotes nondimensional temperature, Pe is a (re-
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FIG. 1. Boundary conditions on the physical space P.

duced) Peclet number, and u and v are known functions This is the form of the equation solved numerically on a
regular rectangular grid in C , where in practice jx , jy , jyy ,of x, y and represent the components of velocity in the

x and y directions respectively. The solution domain is hx , hy , hyy , are evaluated in terms of xj , xh , yj , yh , xjj , xjh ,
xhh , yjj , yjh , yhh . It will be demonstrated in Section 4.1 thatillustrated in Fig. 1.
for the particular mapping technique used here J is non-

2.2. Generalised Curvilinear Coordinates singular. We note that Eq. (2.1) remains parabolic when
transformed to general curvilinear coordinates providedThe use of boundary fitted coordinates allows the prob-
that M is sufficiently differentiable. Indeed the discrimi-lem to be solved in a considerably simpler rectangular
nant b2 2 4 a c of the second order partial differentialgeometry in a new space at the expense of increasing the
equationcomplexity of the equation. Denoting the original physical

space by P , and the computational space by C , we require
the transformation of (2.1) under the mapping M: T

t
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(x, y, t) R (j(x, y), h(x, y), t) from P to C . A simple
application of the chain rule and division by uJu, the deter-

is transformed tominant of the Jacobian matrix of the transformation, yields
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or in conservative form
5 (b2 2 4 a c) Fj
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G under the mapping M, so the sign of the discriminant is
preserved providing uJu is non-zero.

1 FPe Su ShxT
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D1 ShyyT
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G (2.8)
3. THE NUMERICAL SCHEME

Several authors have considered the solution of para-5 Sj2
yT
uJu Djj

1 S2jyhyT
uJu D

jh
1 Sh2

yT
uJu Dhh

.
bolic equations with mixed derivatives of the form given



66 MCKEE, WALL, AND WILSON

by Eq. (2.9) without lower order derivatives. Lax and and we define the operations
Richtmyer [9] proposed a one-parameter scheme which
requires the solution of an implicit system of equations d2

x T n
i, j 5 T n

i11, j 2 2T n
i, j 1 T n

i21, j ,
in general for which relaxation methods were suggested.

dxyTn
i, j 5 T n

i11, j11 2 T n
i11, j21 2 T n

i21, j11 1 T n
i21, j21 ,Douglas and Gunn [5] proposed an ADI method which

requires the solution of four tridiagonal sets of equations =x T n
i, j 5 T n

i, j 2 T n
i21, j ,

at each time step. Several Russian authors have suggested
a variety of ‘‘fractional step’’ schemes (sometimes called

with corresponding definitions for d2
y and =y . The scheme

locally one-dimensional schemes) and have shown that the
treats the second order derivatives in the same way as

numerical solution can be reduced to the solution of two
McKee and Mitchell [10]; indeed, the two schemes are

tridiagonal matrix equations per time step in the case of
identical in the special case when u 5 v 5 0. The scheme

two spatial dimensions; see for instance Samarskii [12] and
may be written in the unsplit form

Andreev [1]. McKee and Mitchell [10] have derived an
equally effective unconditionally stable ADI scheme for
this two-dimensional case. Heron [8] has established con- F1 2
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vergence results for N-dimensional fractional step meth-
ods. In an alternative approach, Warming and Beam [15]
used A-stable linear multistep methods to time-difference 5 HF1 1

ra
2

d2
x 2

pu
2

=xG F1 1
rc
2

d2
y 2

pv
2

=yG (3.2)
together with the method of approximate factorisation to
construct unconditionally stable ADI schemes for mixed
hyperbolic–parabolic partial differential equations which 1

rb
4

dxyJ T n
i, j .

are first order accurate in time. Beam and Warming [2]
used a similar approach to construct unconditionally stable

The scheme is equivalent to one developed using theschemes for parabolic partial differential equations which
method of approximate factorisation using the one-stepare second order accurate in time. More recently Craig
trapezoidal formula to time-difference in the style ofand Sneyd [3] have demonstrated an unconditionally stable
Warming and Beam [15].scheme for N-dimensional parabolic equations with mixed

In the special case where u and v are identically zeroderivatives and in [4] have also derived an ADI scheme
the scheme is consistent to order O(Dt 1 (Dx)2) but morefor a system of parabolic equations with mixed derivatives
generally is of order O(Dt 1 Dx); however, this order ofwhich is shown to be unconditionally stable if asymmetries
accuracy can be improved to O(Dt 1 (Dx)2) by introducingin the coupling matrix are not too large.
the second order upwinding operationFor the parabolic equation (1.1) we propose the alternat-

ing direction implicit scheme given in Douglas-Rachford
split form by the difference equations

=x T n
i, j 5

3
2
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i, j 2 2T n

i21, j 1
1
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i22, j , (3.3)

F1 2
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=xG T n11*
i, j with a corresponding definition for the operator =y . Higher

order upwinding is of little value as the second order spatial
derivative approximations are only second order accurate.
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3.1. Stability Analysis for Constant Coefficients

1
rb
4

dxyG T n
i, j , (3.1a) We use the traditional von Neumann method to analyse

the stability of the scheme given by Eq. (3.2), which is
applicable in the special case when the coefficients a, b, c, uF1 2
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2
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i, j and v are constant. We consider a solution to the difference

equation (3.2) given by
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T n
i, j 5 AeanDteÏ21biDxeÏ21cjDy,

in which T n
i, j is our approximation to T(i Dx, j Dy, n Dt), where b and c are constant wavenumbers. If periodic

where Dx 5 Dy defines a uniform spatial mesh with ratios boundary conditions are assumed the von Neumann condi-
tion for stability requires ueaDtu # 1 for all b, c. It is straight-
forward to show thatr 5 Dt/(Dx)2 5 Dt/(Dy)2, p 5 Dt/Dx,
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d2
x T n

i, j 5 2[cos (b Dx) 2 1]T n
i, j , where we have introduced

d2
y T n

i, j 5 2[cos (c Dy) 2 1]T n
i, j ,

u 5 b Dx, f 5 c Dy.
=x T n

i, j 5 [1 2 cos (b Dx) 1 Ï21 sin (b Dx)]T n
i, j ,

=y T n
i, j 5 [1 2 cos (c Dy) 1 Ï21 sin (c Dy)]T n

i, j ,
Writing

dxy T n
i, j 5 24 sin (c Dy) sin (b Dx)T n

i, j ,

F(a, b, c, u, v, r, p, u, f) 5 [F(a, b, c, u, v, r, p, u, f)which, upon substitution into the scheme given by Eq.
(3.2), yield the amplification factor 2 F(a, b, c, 0, 0, r, p, u, f)] 1 F(a, b, c, 0, 0, r, p, u, f),

(3.5)ueaDtu 5 Uz1z2 1 z0

z3z4
U ,

it is clear that in order to demonstrate unconditional stabil-where
ity of the scheme given by Eq. (3.2), it is sufficient to show
that both terms of the sum in the expression (3.5) are non-z0 5 24br sin(b Dx) sin(cDy)
negative. However, in the case u 5 v 5 0, the scheme

z1 5 [2 2 (2ar 1 pu) (1 2 cos(b Dx)) reduces to the McKee–Mitchell scheme given in [10] and
this scheme is demonstrated to be unconditionally stable,2 Ï21pu sin(b Dx)],
or equivalently

z2 5 [2 2 (2cr 1 pv) (1 2 cos(c Dy))

2 Ï21pv sin(c Dy)], F(a, b, c, 0, 0, r, p, u, f) $ 0.
z3 5 [2 1 (2cr 1 pv) (1 2 cos(c Dy))

1 Ï21pv sin(c Dy)], Thus we need only show that

z4 5 [2 1 (2ar 1 pu) (1 2 cos(b Dx))

D(a, b, c, u, v, r, p, u, f) :5 F(a, b, c, u, v, r, p, u, f)1 Ï21pu sin(b Dx)].

2 F(a, b, c, 0, 0, r, p, u, f) $ 0.
Clearly the von Neumann condition for stability may be
equivalently written as F :5 uz3z4u2 2 uz1z2 1 zou2 $ 0 for
all b and c. Evaluating F gives We will require the following three inequalities.
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LEMMA 2. D(a, b, c, u, v, r, p, u, f)
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2DDG,

It is straightforward to show that D(a, b, c, u, v, r, p, u, f)
takes the form which, using the results of Lemmata 1, 2, and 3, is clearly
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non-negative and hence the scheme given in Eq. (3.2) is Applying von Neumann stability analysis as before we sub-
stituteunconditionally stable. The scheme is also unconditionally

stable when the second order upwinding scheme given in
Eq. (3.3) is applied to the convection terms; the proof is

T n
i1 ,...,iN

5 AeanDt p
N

j51

eÏ21bj ij Dxjsimilar to that for the first order upwinding approximation
and is detailed in the Appendix.

into Eq. (3.9) and find unconditional stability if and only3.2. The Scheme in N Dimensions
if F $ 0 for all u1 , u2 , ..., uN , where

For the N-dimensional heat-transport equation

F :5 SUpN
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i52
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ai, j dxixjwhere parabolicity implies that the matrix A whose i, jth

entry is (A)i, j 5 (1 1 di j)ai, j/2 is positive definite, we extend
the scheme given by Eq. (3.2) to
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When N 5 2, the choice l 5 1 recovers the scheme given
by Eq. (3.2). The introduction of the real parameter l is
necessary if unconditional stability is sought since in the
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special case of no convection terms the scheme given by
Eq. (3.9) defaults to that of Craig and Sneyd [3] who found
the necessary and sufficient condition

l $ lc(N) (3.11)
where

for unconditional stability, where for example lc(2) 5 1
and lc(3) 5 4/3. Clearly condition (3.11) is a necessary

Ej 5
r
2

ajjd 2
xj

2
puj

2
=xj condition for the present scheme to be unconditionally

stable; it is not, however, sufficient in general since when
N 5 2, for example, values of l . lc(2) have been foundand we may choose Dj 5 DI

j or DII
j , where

such that F is negative for some values of u1 , u2 . In short,
it is still not clear whether an unconditionally stable scheme
exists for solving the general N-dimensional heat trans-DI

j 5 l
r
2

ajj d2
xj

2
puj

2
=xj

,
port equation.

DII
j 5 l Sr

2
ajj d2

xj
2

puj

2
=xjD . 4. AN APPLICATION OF THE SCHEME TO THE DYE

LASER PROBLEM

The scheme may be split as 4.1. The Mapping From C to P

An algebraic method is used to map the regular finite
difference grid in C onto the boundary-fitted grid in P

which is more fully described in Fletcher [7], for example.
We schematically illustrate the mapping in Fig. 2. The
method relies on four one-dimensional stretching func-
tions, rAB , rDC , sAD , and sBC , which map the regularly

[1 2 D1]T n11(1)

i1 ,...,iN
5 F1 2 D1 1 2 ON

j51
Ej

1
1
4 O

N

i52
Oi21

j51
ai, jdxixjG T n

i1 ,...,iN
,

[1 2 D2]T n11(2)

i1 ,...,iN
5 T n11(1)

i1 ,...,iN
2 D2T n

i1 ,...,iN
,

: : :

[1 2 DN]T n11
i1 ,...,iN

5 T n11(N21)

i1 ,...,iN
2 DNT n

i1 ,...,iN
.

(3.10)
distributed nodes on boundaries A9B9, D9C9, A9D9, and
B9C9 in C onto (in general) irregularly distributed nodes
on the corresponding boundaries AB, DC, AD, and BC
in P . The stretching functions are smooth mappings of the
interval [0, 1] onto itself and are chosen to cluster grid
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FIG. 2. The mapping from C to P.

cells in areas of greatest computational interest near the xW(a) :5 xAB(a) 5 xDC(a),
boundary walls in the h direction and in the narrowest

yW(a) :5 2yAB(a) 5 yDC(a) . 0,
section of the channel in the j direction. The interior nodes
in P are then obtained from an interpolation from these

for a [ [0, 1]. Furthermore our example converging/di-boundary nodes. Defining the functions representing the
verging channel appropriate for a dye laser cell is symmetri-boundary walls DC and AB parametrically by
cal about the y axis in P so that appropriate stretching
functions satisfyh(xDC(a), yDC(a)) : a [ [0, 1]j,

(4.1)
h(xAB(b), yAB(b)) : b [ [0, 1]j sAD(h*) 5 sBC(h*) :5 s(h*) 5 1 2 s(1 2 h*),

rAB(j*) 5 rDC(j*) :5 r(j*) 5 1 2 r(1 2 j*).(where (xDC(0), yDC(0)) 5 (xD , yD), (xDC(1), yDC(1)) 5
(xC , yC) and similarly (xAB(0), yAB(0)) 5 (xA , yA), (xAB(1),
yAB(1)) 5 (xB , yB)) the mapping from C to P is given by Further details of the stretching functions used in these

calculations are given in Section 4.3. The mappings (4.2)
and (4.3) therefore reduce tox(j, h) 5 (1 2 S(j*, h*))xAB(rAB(j*))

1 S(j*, h*)xDC(rDC(j*)), (4.2)
x(j, h) 5 xW(r(j*)), (4.4)

y(j, h) 5 (1 2 S(j*, h*))yAB(rAB(j*))
y(j, h) 5 [2s(h*) 2 1]yW(r(j*)). (4.5)

1 S(j*, h*)yDC(rDC(j*)), (4.3)

We note that uJ21u has no zeroes or singularities on the
where domain of interest (and hence neither does uJu) since

S(j*, h*) 5 sAD(h*) 1 j*(sBC(h*) 2 sAD(h*))

uJ21u 5 xj yh 2 xh yj 5 2
dxW

dr
dr

dj*
dj*
dj

ds
dh*

dh*
dh

yW(r(j*))
and

and all of the factors in the above expression are positive
j* 5

j 2 j1

j2 2 j1
, h* 5

h 2 h1

h2 2 h1
. and have no singularities.

4.2. Discretisation
However, for the problem under consideration, we have
symmetry about the x axis in P and so Equation (2.8) may be re-written as
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to describe the shape of the walls, which is typical of theT
t

1 uJuPe[uh(Tyh)j 2 (Tyj)hj shape for the channel of a dye laser cell. The stretching
functions used in the grid generation were the asymmetric

1 vh(Txj)h 2 (Txh)jj] 1 uJu( fT)j (4.6) double sided functions derived by Vinokur [14]. Specifi-
cally, if1 uJu(gT)h 5 uJu[(aT)jj 1 (bT)jh 1 (cT)hh],

where
s0 5

ds
dl
U

l50

5
ds
dl
U

l51uJ21ua(j, h) 5 x2
h , (4.7)

uJ21ub(j, h) 5 22xhxj , (4.8) is given, then
uJ21uc(j, h) 5 x2

j , (4.9)

uJ21u2f (j, h) 5 x2
h(xh yjj 2 yhxjj) 2 2xjxh(xh yjh 2 yhxjh) s(l) 5

tanh[c1(l 2 1/2)]
2 tanh(c1/2)

1
1
2

,

1 x2
j ( yhxhh 2 xh yhh), (4.10)

where c1 is derived from solvinguJ21u2g(j, h) 5 x2
h( yjxjj 2 xj yjj) 2 2xjxh( yjxjh 2 xj yjh)

1 x2
j ( yjxhh 2 xj yhh), (4.11)

s0 5
sinh c1

c1
,

Equation (4.6) was solved using the ADI method given
in split form by (3.1). Thus, the following difference equa- and
tions were solved,

r(l) 5
tan[c2(l 2 1/2)]

2 tan(c2/2)
1

1
2

,F1 2
ruJu
2
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x ai, j 1

puJu
2

=x fi, j 1
PepuJu

2
ui, j=x yhi, j

where c2 is derived from solving2
PepuJu

2
vi, j=xxhi, jG T n11*

i, j 5 [1 1 ruJud2
yci, j 2 puJu=ygi, j

2 PepuJuvi, j=yxhi, j
1 PepuJuui, j=y yhi, j

(4.12)
r0 5

sin c2

c2
,

1
ruJu
2

d2
xai, j 2

puJu
2

=x fi, j 2
PepuJu

2
ui, j=x yhi, j

where
1

PepuJu
2

vi, j=xxhi, j

r0 5
dr
dl
U

l50

5
dr
dl
U

l51

.1
ruJu
4

dxybi, jG T h
i, j ,

The values of r0 and s0 used here were 0.9 and 2.0, respec-
tively. The velocity components used here are the well-F1 2

ruJu
2

d2
y ci, j 1

puJu
2

=ygi, j 2
PepuJu

2
ui, j=y yji, j

known lubrication solutions

1
PepuJu

2
vi, j=yxji, jG T n11

i, j 5 T n11*
i, j 2 FruJu

2
d2

yci, j (4.13) u(x, y) 5
3Q

4g(x)
[g(x)2 2 y2], (4.14)

2
puJu

2
=ygi, j 1

PepuJu
2

ui, j=y yji, j
2

PepuJu
2

vi, j=yxji, jG T n
i, j , v(x, y) 5

3Qg9(x)y
4g(x)4 [g(x)2 2 y2], (4.15)

where
where

r 5 Dt/(Dj)2 5 Dt/(Dh)2, p 5 Dt/Dj.

Q 5 Eg(x)

2g(x)
u(x, y) dy

4.3. Computational Details and Accuracy

is the constant volume flux per unit width along the chan-For the results in this section we used the parabola
nel. FORTRAN codes were written to implement the map-
ping described in Section 4.1 to generate the boundary-g(x) 5 0.53 1 0.47x2
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FIG. 3. Plots of T (x 5 0, y, t 5 0.125); (—) exact solution, (? ? ?) 32 grid cells, (?–?) 16 grid cells, and (---) 8 grid cells. All numerical calculations
were made with 25 time steps of size Dt 5 0.005.

fitted grid and to apply the scheme given by Eqs. (4.12) and T 2 TF P k Dxq, T 2 TM P k(2 Dx)q, T 2 TC P k(4 Dx)q.
(4.13). Calculations were made on a DEC 3400S mainframe
computer which typically took 8 s CPU time to generate Eliminating T, k we obtain the observed order
a grid with 40 grid cells in either direction and calculate
ten time steps.

The theoretical spatial accuracy of the scheme using q P log STF 2 TM

TM 2 TC
D@log 2.

the two-point upwind scheme for the convection terms is
O(Dx); we may obtain some indication of the accuracy of
the scheme in practice by calculating the observed order We calculate this observed order at points in the solution
of convergence of the solutions TC , TM , and TF obtained domain where the solution is non-zero and present some
from coarse, medium, and fine grids respectively, where averaged values in Table I. The observed order appears
the medium grid is obtained from the coarse grid by dou- to be close to the theoretical value.
bling the number of grid cells in either direction and this In practice the scheme does exhibit a lack of stability
process is repeated to obtain the fine grid from the medium for large enough grid Courant numbers; for instance, in
one. We thus have solving on a grid with 40 cells in either direction when

Pe 5 100 requires Dt to be less than (approximately) 0.002.
For comparison however, results were obtained with anTABLE I
explicit scheme which forward time-differenced and used

Observed Order of Convergence of Scheme centred differences and first order upwinding to approxi-
for Various Values of Pe mate the second and first order spatial derivatives respec-

tively. It was found that the explicit scheme required DtPe q
to be typically a factor of 10 smaller than the corresponding

0.1 1.222 ADI bound in order to maintain stability. It should be
1.0 1.068 remembered, however, that von Neumann analysis guaran-

10.0 0.924 tees stability in the case of constant coefficients of the
equation and periodic boundary conditions; the presentNote. The coarse, medium, and fine grids consist of 10 3 10, 20 3 20,
problem, however, has non-constant equation coefficients,and 40 3 40 grid cells respectively and 5 time steps of size Dt 5 0.001

were made. The theoretical value for q is 1. non-periodic boundary conditions, and discontinuous ini-
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FIG. 4. Temperature of fluid in a model dye laser cell when (a, b, c) Pe 5 0.1, (d, e, f ) Pe 5 1, and (g, h, i) Pe 5 10 at times (a, d, g) t 5 0.004,
(b, e, h) t 5 0.022, and (c, f, i) t 5 0.075. All calculations were made on a grid of 30 3 30 grid cells with Dt 5 0.001.

tial conditions. For both the explicit and the ADI scheme dimensional diffusion equation on x 5 0. Numerical solu-
tions for various numbers of grid nodes together with theinstability was manifested by rapidly growing disturbances
exact solution are plotted in Fig. 3, which demonstratesnear the discontinuities (x 5 0, y 5 61) in the initial condi-
convergence of the solution under grid refinement in thistions.
case. For Pe 5 0.1, 1, and 10 we plot in Fig. 4 numerical

4.4. Results solutions of Eq. (4.6) obtained through application of the
scheme (4.12), (4.13) at three ‘‘snapshot’’ times. For Pe 5In the special case when Pe 5 0 the exact solution
1.0, the initial pulse evolves in time as shown in Figs. 4d–4f.
Typically the effect of convection is initially to cause the

T( y, t) 5 Oy
n50

4(21)n

(2n 1 1)f
cos (an ye)2a2

nt, formation of a trough in the temperature profile, because
heated fluid is swept away faster from the centre of the

where channel, leaving temperature peaks at the edges where the
speed of the flow is smaller. The effect of convection is
then to move the region of heated fluid downstream, whilean 5

(2n 1 1)f
2g(0)

,
the profile is progressively smoothed out by the diffusion in
the y-direction contributed by the 2T/y2 term in Eq. (2.1).

is easily derived. In this case, since there is no convection The size of the reduced Peclet number controls the bal-
ance between convection and diffusion effects in the chan-(or diffusion) in the x direction, we are solving the one-
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FIG. 5. Cross-sections of T (x, y, t 5 0.005) when Pe 5 100 at x 5 (a) 0, (b) 0.0731, (c) 0.1459, (d) 0.2182, (e) 0.2896, (f ) 0.3601, (g) 0.4295, (h)
0.4977, (i) 0.5647. Calculations were made with Dt 5 0.001 on a grid with 30 3 30 grid cells in either direction.

nel. This is demonstrated by the results in Figs. 4a–4c, the temperature pulse moves faster through the channel
and the initial troughing effect is more pronounced theobtained with Pe 5 0.1, and those obtained with Pe 5 10

in Figs. 4g–4i. It can be seen that the temperature pulse larger the value of the Peclet number.
moves faster and the initial troughing effect is more pro-
nounced the larger the value of Pe. It is perhaps easier to APPENDIX A: PROOF OF UNCONDITIONAL
see the shape of the evolving temperature pulse for high STABILITY FOR SECOND ORDER UPWINDING
values of Pe by plotting cross-sections of the solution at a

We apply the method of Section 3.1 and so consider asequence of stations down the channel at a given time. In
solution to the difference equation (3.2) of the formFig. 5 we plot such a sequence of cross-sections when

Pe 5 100. It may be seen that the profile of the pulse
T n

i, j 5 AeanDteÏ21biDxeÏ21cjDy;gradually transforms from one exhibiting peaks of temper-
ature near the walls to one having a bell shaped profile as

in this case, however,the heated fluid emerges into the unheated fluid through
the centre of the channel downstream.

=xT n
i, j 5 [Ds 2 2 cos (bDx) 1 As cos(2bDx)

5. CONCLUSIONS
1 Ï21(2 sin (bDx) 2 As sin(2bDx))]T n

i, j

In the preceeding work an ADI scheme has been devel-
upon using the second order operation defined by Eq.oped and successfully applied to model the effect a temper-
(3.3), with a similar expression for =yT n

i, j . Definingature pulse has upon the temperature distribution within
a two-dimensional symmetric channel. The scheme solves
a general parabolic differential equation, and has been

F :5 SUF1 2
ra
2

d 2
x 1

pu
2

=xGF1 2
rc
2

d 2
y 1

pv
2

=yG T n11
i, j U2

shown to be unconditionally stable in the case of con-
stant coefficients.

A simple model of flow through a dye laser cell requires
2 UHF1 1

ra
2

d 2
x 2

pu
2

=xGF1 1
rc
2

d 2
y 2

pv
2

=yGthe solution of the two-dimensional heat-transport equa-
tion within a symmetric converging/diverging channel sub-
ject to impulsive heating. The ADI scheme described here 1

rb
4

dxyJ T n
i, jU2D@uT n

i, ju2
was applied to this problem, and the results indicate that
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as before we have unconditional stability according to von where
Neumann analysis if and only if F $ 0. Since in the case
u 5 v 5 0 the scheme again defaults to that of McKee and

A 5 1 1 3 sin2 Su

2D,Mitchell [10] it is sufficient to prove that

D(a, b, c, u, v, r, p, u, f) :5 F(a, b, c, u, v, r, p u, f) C 5 1 1 3 sin2 Sf

2D,
2 F(a, b, c, 0, 0, r, p, u, f) $ 0

B 5 22 cos2 Su

2D cos2 Sf

2DS1 1 2 sin2 Sf

2DDfor all u, f. After some simplification we obtain

3 S1 1 2 sin2 Su

2DD,1
8

D 5 Fpv sin4 Sf

2D1 pu sin4 Su

2DG
and is non-negative if and only if A, C $ 0 and 4 AC 2

3 F1 1 4r 2ac sin2 Su

2D sin2 Sf

2D2
br
2

sin u sin fG B2 $ 0. Clearly A, C $ 0 and

1 p2r sin2 Su

2D sin2 Sf

2DFav 2 S1 1 3 sin2 Sf

2DD 4AC 2 B2 5 F1 1 2 sin2 Sf

2DGF1 1 2 sin2 Su

2DG
1 cu2 S1 1 3 sin2 Su

2DD2 uvb cos2 Su

2D cos2 Sf

2D 3 F1 2 cos4 Su

2DS1 1 2 sin2 Su

2DD
3 S1 1 2 sin2 Sf

2DDS1 1 2 sin2 Su

2DDG 3 cos4 Sf

2DS1 1 2 sin2 Sf

2DDG
1 p3uv sin2 Su

2D sin2 Sf

2DFu sin2 Sf

2D 1 sin2 Su

2DF1 1 2 sin2 Sf

2DG
3 S1 1 3 sin2 Su

2DD1 v sin2 Su

2DS1 1 3 sin2 Sf

2DDG 1 sin2 Sf

2DF1 1 2 sin2 Su

2DG.

1 4 rp sin2 Su

2D sin2 Sf

2DFarv sin2 Sf

2D But

1 cru sin2 Su

2D1 puv sin2 Su

2D sin2 Sf

2DDG 0 # cos4 Sc

2DS1 1 2 sin2 Sc

2DD# 1

for all real c so the term inside the square bracket in3 Fc sin2 Sf

2D1 a sin2 Su

2D1
b
4

sin u sin fG
the above expression for 4 AC 2 B2 is non-negative and
therefore 4AC 2 B2 $ 0 and D $ 0 for all u, f.

1 4p2ruv sin4 Su

2D sin4 Sf

2DFa sin2 Su

2D
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